Short small-interfering RNAs produce interferon-α-mediated analgesia.
نویسندگان
چکیده
BACKGROUND There is increasing interest in RNA interference in pain research using the intrathecal route to deliver small-interfering RNA (siRNA). An interferon (IFN) response is a common side-effect of siRNA. However, the IFN response in the spinal cord after intrathecal administration of siRNA remains unknown. We hypothesized that high doses of siRNAs can elicit off-target analgesia via releasing IFN-α. We investigated the IFN response and its role in regulating pain sensitivity in the spinal cords after intrathecal administration of siRNAs. METHODS Male Sprague-Dawley rats were given intrathecal injections of non-targeting (NT) siRNAs or IFN-α and tested for complete Freund's adjuvant (CFA)-induced mechanical allodynia and heat hyperalgesia. IFN-α in the spinal cord after injection of NT siRNAs was measured by western blotting and immunohistochemical staining. RESULTS IFN-α was up-regulated in the spinal cord after intrathecal treatment of NT siRNAs. Intrathecal injection of NT siRNAs, at high doses of 10 or 20 μg, reduced CFA-induced inflammatory pain (P<0.05). Intrathecal application of IFN-α inhibited pain hypersensitivity in inflamed rats and produced analgesia in naïve rats (P<0.05). Notably, the anti-nociceptive effects elicited by NT siRNAs and IFN-α were reversed by IFN-α neutralizing antibody and naloxone. CONCLUSIONS Our data suggest that (i) intrathecal administration of high doses of siRNA (≥ 10 μg) induced up-regulation of IFN-α in the spinal cord and produced analgesic effects through IFN-α, and (ii) IFN-α's analgesic effect is mediated via opioid receptors. Caution must be taken to avoid IFN-α-mediated analgesic effects of siRNAs in pain research.
منابع مشابه
Type I Interferons Impede Short Hairpin RNA-Mediated RNAi via Inhibition of Dicer-Mediated Processing to Small Interfering RNA
RNAi by short hairpin RNA (shRNA) is a powerful tool not only for studying gene functions in various organisms, including mammals, but also for the treatment of severe disorders. However, shRNA-expressing vectors can induce type I interferon (IFN) expression by activation of innate immune responses, leading to off-target effects and unexpected side effects. Several strategies have been develope...
متن کاملShort-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation
Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have b...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملGenomewide view of gene silencing by small interfering RNAs.
RNA interference (RNAi) is an evolutionarily conserved mechanism in plant and animal cells that directs the degradation of messenger RNAs homologous to short double-stranded RNAs termed small interfering RNA (siRNA). The ability of siRNA to direct gene silencing in mammalian cells has raised the possibility that siRNA might be used to investigate gene function in a high throughput fashion or to...
متن کاملPlant Responses to Pathogen Attack: Small RNAs in Focus
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of anaesthesia
دوره 108 4 شماره
صفحات -
تاریخ انتشار 2012